A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction
نویسندگان
چکیده
Blakeslee and McCourt ((1997) Vision Research, 37, 2849-2869) demonstrated that a multiscale array of two-dimensional difference-of-Gaussian (DOG) filters provided a simple but powerful model for explaining a number of seemingly complex features of grating induction (GI), while simultaneously encompassing salient features of brightness induction in simultaneous brightness contrast (SBC), brightness assimilation and Hermann Grid stimuli. The DOG model (and isotropic contrast models in general) cannot, however, account for another important group of brightness effects which includes the White effect (White (1979) Perception, 8, 413-416) and the demonstrations of Todorovic ((1997) Perception, 26, 379-395). This paper introduces an oriented DOG (ODOG) model which differs from the DOG model in that the filters are anisotropic and their outputs are pooled nonlinearly. The ODOG model qualitatively predicts the appearance of the test patches in the White effect, the Todorovic demonstration, GI and SBC, while quantitatively predicting the relative magnitudes of these brightness effects as measured psychophysically using brightness matching. The model also accounts for both the smooth transition in test patch brightness seen in the White effect (White & White (1985) Vision Research, 25, 1331-1335) when the relative phase of the test patch is varied relative to the inducing grating, and for the spatial variation of brightness across the test patch as measured using point-by-point brightness matching. Finally, the model predicts intensive aspects of brightness induction measured in a series of Todorovic stimuli as the arms of the test crosses are lengthened (Pessoa, Baratoff, Neumann & Todorokov (1998) Investigative Ophthalmology and Visual Science, Supplement, 39, S159), but fails in one condition. Although it is concluded that higher-level perceptual grouping factors may play a role in determining brightness in this instance, in general the psychophysical results and ODOG modeling argue strongly that the induced brightness phenomena of SBC, GI, the White effect and the Todorovic demonstration, primarily reflect early-stage cortical filtering operations in the visual system.
منابع مشابه
A multiscale spatial filtering account of the Wertheimer–Benary effect and the corrugated Mondrian
Blakeslee and McCourt [Blakeslee, B., & McCourt, M.E. (1997). Similar mechanisms underlie simultaneous brightness contrast and grating induction. Vision Research, 37, 2849-2869] demonstrated that a multiscale array of two-dimensional difference-of-Gaussian (DOG) filters provided a simple but powerful model for explaining a number of seemingly complex features of grating induction (GI), while si...
متن کاملMultiresolution wavelet framework models brightness induction effects
A new multiresolution wavelet model is presented here, which accounts for brightness assimilation and contrast effects in a unified framework, and includes known psychophysical and physiological attributes of the primate visual system (such as spatial frequency channels, oriented receptive fields, contrast sensitivity function, contrast non-linearities, and a unified set of parameters). Like ot...
متن کاملOriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast
The White effect [Perception 8 (1979) 413] cannot be simply explained as due to either brightness contrast or brightness assimilation because the direction of the induced brightness change does not correlate with the amount of black or white border in contact with the gray test patch. This has led some investigators to abandon spatial filtering explanations not only for the White effect but for...
متن کاملA unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization
Brightness induction includes both contrast and assimilations effects. Brightness contrast occurs when the brightness of a test region shifts away from the brightness of adjacent regions. Brightness assimilation refers to the opposite situation in which the brightness of the test region shifts toward that of the surrounding regions. Interestingly, in the White effect [Perception 8 (1979) 413] t...
متن کاملThe mechanisms involved in brightness induction effects: a reply to Zaidi.
McCourt (1982) described what he called the “grating induction effect”: an illusory grating is induced in a physically homogeneous grey stripe superimposed upon and orthogonal to a sinewave grating. The induced grating is 180 deg out of phase with, and (at least in the case described above) has the same spatial frequency and orientation as, the inducing grating. Zaidi (1989) has recently descri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 39 شماره
صفحات -
تاریخ انتشار 1999